Resource Augmentation Bounds of EDF for Sporadic Tasks with Constrained Deadlines

Zhishan Guo¹ and Xin Han²

¹ Department of Computer Science, Missouri S&T

² School of Software Technology, Dalian University of Technology, China

Speedup / Resource Augmentation Bound

- A schedulability test has <u>speedup factor</u>^[a] s, s ≥ 1 , if *any* task set that is *schedulable* by *any* algorithm on platform with processors of speed 1, it will be deemed schedulable by this test upon a platform with processors that are *s* times as fast.
- Speedup bound means a lower bound of speedup factor
- Major metric & standard tool for evaluating sub-optimality

[a] B. Kalyanasundaram and K. Pruhs, "Speed is as powerful as clairvoyance," J. ACM, vol. 47, no. 4, pp. 617–643, 2000.

Speedup / Resource Augmentation Bound

- A schedulability test has <u>speedup factor</u>^[a] **s**, **s** \geq 1, if *any* task set that is *schedulable* by *any* algorithm on platform with processors of speed 1, it will be deemed schedulable by this test upon a platform with processors that are *s times as fast*.
- Speedup bound means a lower bound of speedup factor
- Major metric & standard tool for evaluating sub-optimality
- Potential pitfalls

Z. Guo, "Regarding the optimality of speedup bounds of mixed-criticality schedulability tests," Dagstuhl Seminar 17131, 2017.
J.-J. Chen et al., "On the Pitfalls of Resource Augmentation Factors and Utilization Bounds in Real-Time Scheduling," in ECRTS 2017, pp. 9:1–9:25.
K. Agrawal and S. Baruah, "Intractability issues in mixed-criticality scheduling," in ECRTS'18, to appear.

Life (RT-Scheduling) Is Often Hard

- Uniprocessor, sporadic task set
 - Scheduler: EDF is optimal
 - Schedulability test
 - Implicit deadlines: U≤1, optimal (necessary and sufficient)
 - Constrained deadlines
 - Co-NP-Hard [b]
 - ∀t, dbf(τ,t) ≤ t
 optimal,
 - Exp. time!

[b] F. Eisenbrand and T. Rothvoß, "EDF-schedulability of synchronous periodic task systems is co-np-hard," SIAM 2010, pp. 1029–1034.

Life (RT-Scheduling) Is Often Hard

- m (identical) processors, sporadic task set τ
 - pFair is optimal...
 - G-EDF or G-FP
 - Partitioned scheduling
 - Speedup = 3 ^[d]
 - Approximate dbf (dbf*) [c]
 - $dbf^{*}(\tau,t)/dbf(\tau,t) \leq 2$
 - $\forall t, \tau$ is any feasible set

[c] K. Albers and F. Slomka, "An event stream driven approximation for the analysis of real-time systems," in ECRTS 2004, pp. 187–195.
[d] S. Baruah and N. Fisher, "The partitioned multiprocessor scheduling of sporadic task systems," in RTSS 2005, pp. 321–329.

Life (RT-Scheduling) Is Often Hard

- m (identical) processors, sporadic task set τ

[c] K. Albers and F. Slomka, "An event stream driven approximation for the analysis of real-time systems," in ECRTS 2004, pp. 187–195.
[d] S. Baruah and N. Fisher, "The partitioned multiprocessor scheduling of sporadic task systems," in RTSS 2005, pp. 321–329.

Achieving a Better Bound – Existing Work

- ∀t, dbf*(τ,t)/t ≤ 1.632 ^[e]
 - τ: any uni-proc. feasible set
- Main ideas:
 - Consider only $dbf^{*}(\tau', D_{n})$
 - Normalization:

D

For each i, set $T'_i = D'_n - D'_i$

[e] J.-J. Chen and S. Chakraborty, "Resource augmentation bounds for approximate demand bound functions," in RTSS 2011, pp. 272–281.

D

Achieving a Better Bound – Existing Work

 D_1

 D_2

 D_{3}

D

D

D_n

MISSOURI

- ∀t, dbf*(τ,t)/t ≤ 1.632 ^[e]
 - τ: any uni-proc. feasible set
- Main ideas:
 - Consider only dbf*(*t*', D_n)
 Normalization/Relaxation: For each i, set T_i' = D_n' - D_i'
 - Issue:
 - $\Sigma_i C_i / T_i \le 1$ may not hold
 - dbf*(τ' , D_n') $\geq D_n'$

[e] J.-J. Chen and S. Chakraborty, "Resource augmentation bounds for approximate demand bound functions," in RTSS 2011, pp. 272–281.

Achieving a Potentially Optimal Bound

D₁

 D_2

 D_3

D

D

D_n

MISSOURI

- ∀t, dbf*(τ,t)/t ≤ 1.555 ^[f]
 - τ: **any** uni-proc. feasible set
 - Want to maximize: dbf*(τ',D['])
- Main ideas:
 - Consider only dbf*(τ', D_n)
 Normalization/Relaxation: C₁' = C₂' = ... = C_n' Set D_i' = i/n*D_n'
 s.t. Σ_i T_i' = (n-1)D_n'

[f] X. Han et al., "An Improved Speedup Factor for Sporadic Tasks with Constrained Deadlines under Dynamic Priority Scheduling," in submission.

Achieving a Potentially Optimal Bound

D₁

 D_2

 D_3

D

D

D_n

MISSOURI

- ∀t, dbf*(τ,t)/t ≤ 1.5
 - τ: **any** uni-proc. feasible set
 - Want to maximize: $dbf^{*}(\tau', D_{n'})$
- Main ideas:
 - Consider only dbf*(τ',D_n)
 Normalization/Relaxation:
 - 2

1.5 is the lower bound ^[e]

Thank You!

Zhishan Guo

guozh@mst.edu

RTSOPS (with ECRTS), July 3, 2018 @ Barcelona, Spain

Achieving a Potentially Optimal Bound

- ∀t, dbf*(τ,t)/t ≤ 1.5
 - τ: **any** uni-proc. feasible set
 - Want to maximize: dbf*(τ',D[']_n)
- Main ideas:
 - Consider only dbf*(τ',D_n)
 Normalization/Relaxation:

D _i ≥1 are integer	°S
$\sum_{i=1}^{n-1} D_i = (n-1)r$	۱
Lower bound of	•
$\lim_{n\to\infty} \Sigma_{i=1}^{n-1} i/$	D _i
Guess: n/2	

1.5 is the lower bound ^[e]

