



# Toward temporal constraints in self-driving vehicles

Evariste NTARYAMIRA, Cristian MAXIM, Carlos Flores PINO, Liliana CUCU

## Introduction and motivation(1)

- In recent years, automated vehicles have been gaining interest for their capabilities to solve many transport issues.
- The automated vehicles are composed by numerous interconnected **embedded systems** that must cooperate between them.
- The knowledge of the system is fundamental for the correct design of the vehicle's architecture.

# Introduction and motivation(2)

• **Platooning :** The term **"platoon"** is used to describe several vehicles operated under automatic control as a unit when they are traveling at the same speed with relatively small inter-vehicle spacing.



• Organization:

- Each vehicle has on-board sensors, actuators automation and vehicular communication(v2v)
- The main goal is to regulate the spacing gaps in order to increase safety and to improve traffic flow.
- These goals are achieved thanks to a regular driving data exchange between vehicles within the platoon

#### For the correct and safe deployment of the platoon system, the temporal knowledge of the system is a priority

BARCELONA, RTSOPS 07/03/2018

Evariste NTARYAMIRA, INRIA Paris

# Platoon control engineering: Overview



BARCELONA, RTSOPS 07/03/2018

### **Observations & Weaknesses**

- The control model is not designed with a formal methodology in mind
  - Verified and tested for functional requirements fulfillment by simulations(Feedback control loop, Infinity norm, PID regulator parameters adjustments, etc..)

#### • Unknown component processing time

- Varying processing time for a component due to
  - Dependability of the state of other components it is connected to
  - Task switching to processor, disk and I/O access
  - Variation due to the dynamics of the environments
  - High dependency on the host OS( components priority assignment constraints)

#### Data relevancy constraints

- Since the interconnected components sample at different rates, there is possibility of data loss or same data being used several times, even when outof-date
- **Issues related to the scheduling specification-** usage of multicore (not only) systems stays unclear

## System model description

- System S of a set of n tasks. Every task τ<sub>i</sub> is characterized by a tuple (C<sub>i</sub>, T<sub>i</sub>, D<sub>i</sub>) where C<sub>i</sub>, T<sub>i</sub> and D<sub>i</sub> stand respectively for worst-case execution, inter-arrival time and deadline
- Tasks are splited into two classes: producers  $(\tau^p)$ , and consumers  $(\tau^c)$  tasks
- Producers as well as consumers gather the data at different rates due to the heterogeneity of devices and communication gateways



## Scheduling challenges and open problems

For the considered model, here are scheduling-oriented challenges to overcome:

- How to provide a worst-case bound on the task response time of the system?
- How are the tasks with precedence constraints scheduled on a multicore processor such that data relevancy constraints is ensured?
- How can we estimate/compute the execution time of each task by considering:
  - Communication delays induced by different communication channels(WIFI, CAN, LiDAR and/or RADAR) ?
  - Possible variation of task timing parameters (execution time for instance) due to dynamics of the environment

