
Nested Locks in the Lock Implementation:
The Real-Time Read-Write Semaphores on Linux

Daniel B. de Oliveira1,2,3, Daniel Casini2, Rômulo S. de Oliveira3, Tommaso Cucinotta2, Alessandro Biondi2, and Giorgio Buttazzo2

Email: bristot@redhat.com, romulo.deoliveira@ufsc.br,
{ daniel.casini,tommaso.cucinotta, alessandro.biondi, giorgio.buttazzo } @santannapisa.it

Real-time Scheduling Open Problems Seminar (RTSOPS 2018)

- Linux is a GPOS with RTOS ambitions
- Preemptive
- FIFO (TLFP) and Deadline (JLFP) schedulers
- User-space locks with PIP & PCP

- PREEMPT-RT improves Linux’s predictability by:
- Making system as preemptive/schedulable as possible
- Bounding priority inversions using PIP on kernel locks
- Max (activation delay?) latency of 150 µs

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux2

Real-time Linux

Due to Linux’s GPOS nature, RT Linux developers are
challenged to provide the predictability required for an

RTOS, while not causing regressions on the general
purpose benchmarks.

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux3

Real-time Linux howevers

- Developers cannot cause performance regressions
- Throughput:

- Two implementations: RT and non RT
- A newer algorithm cannot cause - much - regression compared to the older one

- Predictability:
- Cannot increase the latency

- e.g, cannot disable the preemption for a long period

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux4

In practice it means

As a consequence, the implementation of some well known algorithms, like
read/write semaphores, has been done using approaches that were

exhaustively explored in academic papers.

IOW: it works, but...

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux5

Consequences...

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux6

Read/write semaphores on Linux

Read-side

down_read(&rw_semapore) {
 /* enters in the read-side */
}

/*
 * Read-side critical section
 * Parallel with other readers
 * No writers
 */

up_read(&rw_semapore) {
 /* leaves the read-side */
}

Write-side

down_write(&rw_semapore) {
 /* enters in the write-side */
}

/*
 * Write-side critical section
 * Exclusive access
 */

up_write(&rw_semapore) {
 /* leaves the write-side */
}

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux7

Read/write semaphores on Linux

struct rw_semaphore {
 atomic_t readers;
 struct rt_mutex rtmutex;
};

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux8

Read/write semaphores on Linux

struct rw_semaphore {
 atomic_t readers;
 struct rt_mutex rtmutex;
};

struct rt_mutex {
 raw_spinlock_t wait_lock;
 struct rb_root_cached waiters;
 struct task_struct *owner;
 int save_state;
};

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux9

Read/write semaphores on Linux

struct rw_semaphore {
 atomic_t readers;
 struct rt_mutex rtmutex;
};

struct rt_mutex {
 raw_spinlock_t wait_lock;
 struct rb_root_cached waiters;
 struct task_struct *owner;
 int save_state;
};

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux10

down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Atomic operation

Mutex: ...
Spin lock: ...

Concurrent down operations

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux11

down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Atomic operation

Mutex: held
Spin lock: ...

Concurrent down operations

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux12

down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Atomic operation

Mutex: held
Spin lock: ...

Concurrent down operations

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux13

down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Atomic operation

Mutex: held
Spin lock: ...

Concurrent down operations

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux14

down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Mutex: held
Spin lock: ...

Concurrent down operations

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux15

down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Concurrent down operations

Mutex: held
Spin lock: block

Mutex: ...
Spin lock: held

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux16

down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Concurrent down operations

Mutex: held
Spin lock: block

Mutex: ...
Spin lock: held

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux17

down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Concurrent down operations

Mutex: held
Spin lock: block

Mutex: ...
Spin lock: held

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux18

down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Concurrent down operations

Mutex: held
Spin lock: block

Mutex: ...
Spin lock: held

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux19

down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Concurrent down operations

Mutex: held
Spin lock: held

Mutex: ...
Spin lock: ...

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux20

A task taking a write lock,
With a nested mutex
With a nested spin-lock.

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Mutex: held
Spin lock: held

Concurrent down operations

Open Issues

1) Implementing in Linux state-of-the-art protocols for
heterogeneous nested locks and developing novel

analysis techniques

- B. C. Ward and J. H. Anderson, “Supporting nested locking in
 multiprocessor real-time systems,” in Real-Time Systems (ECRTS), 2012
 24th Euromicro Conference on, 2012, pp. 223–232.

- Proposed real-time nested locking protocol (RNLP), with the related asymptotic analysis.

- B. C. Ward and J. H. Anderson, “Fine-grained multiprocessor real-time locking
with improved blocking,” in Proceedings of the 21st International Conference on
Real-Time Networks and Systems, ser. RTNS ’13, 2013.

- Conceived to deal with heterogeneous nested critical sections: Block + Spinning (
short-on-long)

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux23

Shared memory nested critical sections

- C. E. Nemitz, T. Amert, and J. H. Anderson, “Real-time multiprocessor locks with
nesting: Optimizing the common case,” in Proceedings of the 25th
International Conference on Real-Time and Network Systems (RTNS 2017), 2017

- nested read/write spin lock with fast path!

- A. Biondi, A. Weider, and B. Brandenburg, “A blocking bound for nested
 fifo spin locks,” in Real-Time Systems Symposium (RTSS), 2016, pp.
 291–302.

- Graph abstraction is introduced to derive a fine-grained analysis,
 not based on asymptotic bounds for FIFO non-preemptive spin locks.

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux24

Shared memory nested critical sections

- Sleeping:
- Nested blocking (rt mutexes)
- Nested read/write (rw semaphores)

- Busy-wait:
- Nested read/write spin (rw lock)
- Nested spinlock (raw spin lock)

- Fast path is important

- Schedulers: TLFP, JLFP & IRQ/NMI

- Arbitrary affinities

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux25

Linux’s locking needs

2) The design of specialized analysis techniques
accounting for specific implementations of

complex types of locks (e.g., the aforementioned
read/write lock in Linux).

3) finding more efficient locking protocols, accounting
for both general purpose benchmark performance (i.e.,
average-case behavior, needed by the GPOS nature of

Linux) and predictability.

Questions?

Thanks!

