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- Linux is a GPOS with RTOS ambitions
- Preemptive
- FIFO (TLFP) and Deadline (JLFP) schedulers
- User-space locks with PIP & PCP

- PREEMPT-RT improves Linux’s predictability by:
- Making system as preemptive/schedulable as possible
- Bounding priority inversions using PIP on kernel locks
- Max (activation delay?) latency of 150 µs
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Real-time Linux



Due to Linux’s GPOS nature, RT Linux developers are 
challenged to provide the predictability required for an 

RTOS, while not causing regressions on the general 
purpose benchmarks.
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Real-time Linux howevers



- Developers cannot cause performance regressions
- Throughput:

- Two implementations: RT and non RT
- A newer algorithm cannot cause - much - regression compared to the older one

- Predictability:
- Cannot increase the latency

- e.g, cannot disable the preemption for a long period
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In practice it means



As a consequence, the implementation of some well known algorithms, like 
read/write semaphores, has been done using approaches that were 

exhaustively explored in academic papers.

IOW: it works, but...
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Consequences...
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Read/write semaphores on Linux

Read-side

down_read(&rw_semapore) {
  /* enters in the read-side */
}

/* 
 * Read-side critical section
 * Parallel with other readers
 * No writers
 */

up_read(&rw_semapore) {
  /* leaves the read-side */
}

Write-side

down_write(&rw_semapore) {
  /* enters in the write-side */
}

/* 
 * Write-side critical section
 * Exclusive access
 */

up_write(&rw_semapore) {
  /* leaves the write-side */
}
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Read/write semaphores on Linux

struct rw_semaphore {
 atomic_t               readers;
 struct rt_mutex        rtmutex;
};
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Read/write semaphores on Linux

struct rw_semaphore {
 atomic_t               readers;
 struct rt_mutex        rtmutex;
};

struct rt_mutex {
 raw_spinlock_t         wait_lock;
 struct rb_root_cached  waiters;
 struct task_struct     *owner;
 int                    save_state;
};
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Read/write semaphores on Linux

struct rw_semaphore {
 atomic_t               readers;
 struct rt_mutex        rtmutex;
};

struct rt_mutex {
 raw_spinlock_t         wait_lock;
 struct rb_root_cached  waiters;
 struct task_struct     *owner;
 int                    save_state;
};



RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux10

down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */ 

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Atomic operation

Mutex: ...
Spin lock: ...

Concurrent down operations
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down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */ 

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Atomic operation

Mutex: held
Spin lock: ...

Concurrent down operations
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down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */ 

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Atomic operation

Mutex: held
Spin lock: ...

Concurrent down operations
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down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */ 

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Atomic operation

Mutex: held
Spin lock: ...

Concurrent down operations
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down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */ 

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Mutex: held
Spin lock: ...

Concurrent down operations
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down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */ 

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Concurrent down operations

Mutex: held
Spin lock: block

Mutex: ...
Spin lock: held
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down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */ 

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Concurrent down operations

Mutex: held
Spin lock: block

Mutex: ...
Spin lock: held
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down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */ 

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Concurrent down operations

Mutex: held
Spin lock: block

Mutex: ...
Spin lock: held
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down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */ 

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Concurrent down operations

Mutex: held
Spin lock: block

Mutex: ...
Spin lock: held
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down_read(rw_sem)
if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */ 

}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

}

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Concurrent down operations

Mutex: held
Spin lock: held

Mutex: ...
Spin lock: ...
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A task taking a write lock,
With a nested mutex
With a nested spin-lock.

down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != 0)

suspend waiting for the last reader
while(1) {

take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return

}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader

}
return

}

Mutex: held
Spin lock: held

Concurrent down operations



Open Issues



1) Implementing in Linux state-of-the-art protocols for  
heterogeneous nested locks and developing novel 

analysis techniques



-  B. C. Ward and J. H. Anderson, “Supporting nested locking in 
   multiprocessor real-time systems,” in Real-Time Systems (ECRTS), 2012 
   24th Euromicro Conference on, 2012, pp. 223–232.

- Proposed real-time nested locking protocol (RNLP), with the related asymptotic analysis.

-  B. C. Ward and J. H. Anderson, “Fine-grained multiprocessor real-time locking 
with improved blocking,” in Proceedings of the 21st International Conference on 
Real-Time Networks and Systems, ser. RTNS ’13, 2013.

- Conceived to deal with heterogeneous nested critical sections: Block + Spinning ( 
short-on-long)
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Shared memory nested critical sections



- C. E. Nemitz, T. Amert, and J. H. Anderson, “Real-time multiprocessor locks with 
nesting: Optimizing the common case,” in Proceedings of the 25th
International Conference on Real-Time and Network Systems (RTNS 2017), 2017

- nested read/write spin lock with fast path!

-  A. Biondi, A. Weider, and B. Brandenburg, “A blocking bound for nested  
   fifo spin locks,” in Real-Time Systems Symposium (RTSS), 2016, pp.   
   291–302.

- Graph abstraction is introduced to derive a fine-grained analysis, 
   not based on asymptotic bounds for FIFO non-preemptive spin locks.
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Shared memory nested critical sections



- Sleeping:
- Nested blocking (rt mutexes)
- Nested read/write (rw semaphores)

- Busy-wait:
- Nested read/write spin (rw lock)
- Nested spinlock (raw spin lock)

- Fast path is important

- Schedulers: TLFP, JLFP & IRQ/NMI

- Arbitrary affinities
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Linux’s locking needs



2) The design of specialized analysis techniques 
accounting for specific implementations of

complex types of locks (e.g., the aforementioned 
read/write lock in Linux).



3) finding more efficient locking protocols, accounting 
for both general purpose benchmark performance (i.e., 
average-case behavior, needed by the GPOS nature of 

Linux) and predictability.



Questions?



Thanks!


