Real-time Scheduling Open Problems Seminar (RTSOPS 2018)

Nested Locks in the Lock Implementation:
The Real-Time Read-Write Semaphores on Linux

\ %

Daniel B. de Oliveira"?3, Daniel Casini?, Rémulo S. de Oliveira3, Tommaso Cucinotta?, Alessandro Biondi?, and Giorgio Buttazzo?
Email: bristot@redhat.com, romulo.deoliveira@ufsc.br,
{ daniel.casini,tommaso.cucinotta, alessandro.biondi, giorgio.buttazzo } @santannapisa.it



Real-time Linux

- Linux is a GPOS with RTOS ambitions
- Preemptive
- FIFO (TLFP) and Deadline (JLFP) schedulers
- User-space locks with PIP & PCP

- PREEMPT-RT improves Linux’s predictability by:
- Making system as preemptive/schedulable as possible
- Bounding priority inversions using PIP on kernel locks
- Max (activation delay?) latency of 150 ps

2 RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux



Real-time Linux howevers

Due to Linux’s GPOS nature, RT Linux developers are
challenged to provide the predictability required for an
RTOS, while not causing regressions on the general
purpose benchmarks.

3 RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux



In practice it means

- Developers cannot cause performance regressions
- Throughput:

- Two implementations: RT and non RT
- A newer algorithm cannot cause - much - regression compared to the older one

- Predictability:
- Cannot increase the latency
- e.g, cannot disable the preemption for a long period

4 RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux



Consequences...

As a consequence, the implementation of some well known algorithms, like
read/write semaphores, has been done using approaches that were
exhaustively explored in academic papers.

|IOW: it works, but...

5 RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux



6

Read/write semaphores on Linux

Read-side

down_read(&rw_semapore) {
/* enters in the read-side */

}

/*

*

Read-side critical section
Parallel with other readers
* No writers

*/

*

up_read(&rw_semapore) {
/* leaves the read-side */

}

Write-side

down_write(&rw_semapore) {
/* enters in the write-side */

}

/%

* Write-side critical section
* Exclusive access

*/

up_write(&rw_semapore) {
/* leaves the write-side =*/

}

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux



Read/write semaphores on Linux

struct rw_semaphore {

atomic_t readers;
struct rt_mutex rtmutex;
s

7 RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux



Read/write semaphores on Linux

struct rt_mutex {
struct rw_semaphore { raw_spinlock_t wait_lock;
atomic_t readers; struct rb_root_cached waiters;
struct rt_mutex rtmutex; struct task_struct *owner ;
}; int save_state;
i

8 RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux



Read/write semaphores on Linux

struct rt_mutex {
struct rw_semaphore { raw_spinlock_t wait_lock;
atomic_t readers; struct rb_root_cached waiters;
struct rt_mutex rtmutex; struct task_struct *owner ;
}; int save_state;
i

9 RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux



Concurrent down operations

Atomic operation

down_read(rw_sem)

10

if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */
}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

down_write(rw_sem) {

Mutex: ...
Spin lock: ...

—— take rw_sem->rtmutex

clear

READER BIAS

if (rw_sem->readers != 0)

while(

}

return

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux

suspend waiting for the last reader
1) A
take sem->rtmutex->wait_lock
if (sem->readers == 0) {
set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return
}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader



Concurrent down operations

Atomic operation

down_read(rw_sem)

i

if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */
}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

down_write(rw_sem) {

Mutex: held
Spin lock: ...

take rw_sem->rtmutex

—» clear

READER BIAS

if (rw_sem->readers != 0)

while(

}

return

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux

suspend waiting for the last reader
1) A
take sem->rtmutex->wait_lock
if (sem->readers == 0) {
set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return
}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader



Concurrent down operations

Atomic operation

down_read(rw_sem)

12

if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */
}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

down_write(rw_sem) {

Mutex: held
Spin lock: ...

take rw_sem->rtmutex

clear

READER BIAS

—— if (rw_sem->readers != 0)

while(

}

return

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux

suspend waiting for the last reader
1) A
take sem->rtmutex->wait_lock
if (sem->readers == 0) {
set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return
}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader



Concurrent down operations

Atomic operation

down_read(rw_sem)

13

if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */
}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

down_write(rw_sem) {

Mutex: held
Spin lock: ...

take rw_sem->rtmutex

clear

READER BIAS

if (rw_sem->readers != 0)

— while(

}

return

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux

suspend waiting for the last reader

1) A
take sem->rtmutex->wait_lock
if (sem->readers == 0) {

set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return
}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader



Concurrent down operations

down_read(rw_sem)

14

if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */
}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

down_write(rw_sem) {

Mutex: held
Spin lock: ...

take rw_sem->rtmutex

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux

clear READER BIAS
if (rw_sem->readers != 0)
suspend waiting for the last reader
while(1) {
- take sem->rtmutex->wait_lock
if (sem->readers == 0) {
set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return
}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader
}
return
}



down_read(rw_sem)

15

Concurrent down operations

Mutex: ...
Spin lock: held

if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */
}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

down_write(rw_sem) {

Mutex: held
Spin lock: block

take rw_sem->rtmutex

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux

clear READER BIAS
if (rw_sem->readers != 0)
suspend waiting for the last reader
while(1) {
- take sem->rtmutex->wait_lock
if (sem->readers == 0) {
set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return
}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader
}
return
}



down_read(rw_sem)

16

Concurrent down operations

Mutex: ...
Spin lock: held

if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */
}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

down_write(rw_sem) {

Mutex: held
Spin lock: block

take rw_sem->rtmutex

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux

clear READER BIAS
if (rw_sem->readers != 0)
suspend waiting for the last reader
while(1) {
- take sem->rtmutex->wait_lock
if (sem->readers == 0) {
set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return
}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader
}
return
}



down_read(rw_sem)

17

Concurrent down operations

Mutex: ...
Spin lock: held

if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */
}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

down_write(rw_sem) {

Mutex: held
Spin lock: block

take rw_sem->rtmutex

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux

clear READER BIAS
if (rw_sem->readers != 0)
suspend waiting for the last reader
while(1) {
- take sem->rtmutex->wait_lock
if (sem->readers == 0) {
set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return
}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader
}
return
}



down_read(rw_sem)

18

Concurrent down operations

Mutex: ...
Spin lock: held

if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */
}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

down_write(rw_sem) {

Mutex: held
Spin lock: block

take rw_sem->rtmutex

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux

clear READER BIAS
if (rw_sem->readers != 0)
suspend waiting for the last reader
while(1) {
- take sem->rtmutex->wait_lock
if (sem->readers == 0) {
set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return
}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader
}
return
}



down_read(rw_sem)

19

Concurrent down operations

Mutex: ...
Spin lock: ...

if (++rw_sem->readers > 1)

return /* enter the critical section */
else

rw_sem->readers--

take rw_sem->rtmutex.wait_lock

if (WRITER BIAS is not set) {
rw_sem->readers++
release rw_sem->rtmutex.wait_lock
return /* enter in the critical section */
}
release rw_sem->rtmutex.wait_lock
take rw_sem->rt_mutex
rw_sem->readers++
release the rw_sem->rt_mutex
return /* enter in the critical section */

down_write(rw_sem) {

Mutex: held
Spin lock: held

take rw_sem->rtmutex

RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux

clear READER BIAS
if (rw_sem->readers != 0)
suspend waiting for the last reader
while(1) {
take sem->rtmutex->wait_lock
- if (sem->readers == 0) {
set WRITER BIAS
release rw_sem->rtmutex->wait_lock
return
}
release rw_sem->rtmutex->wait_lock.
suspend waiting for the last reader
}
return
}



Concurrent down operations

Mutex: held
Spin lock: held
down_write(rw_sem) {
take rw_sem->rtmutex
clear READER BIAS
if (rw_sem->readers != @)
suspend waiting for the last reader
while(1) {
take sem->rtmutex->wait_lock

. . — if (sem->readers == 0) {
A task taklng a write IOCk, set WRgTER BIAg

release rw_sem->rtmutex->wait_lock

With a nested mutex . am

Wlth a neSted Spln_lock. release rw_sem->rtmutex->wait_lock.

suspend waiting for the last reader
}

return

20 RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux



Open Issues



1) Implementing in Linux state-of-the-art protocols for
heterogeneous nested locks and developing novel
analysis techniques



Shared memory nested critical sections

- B. C. Ward and J. H. Anderson, “Supporting nested locking in
multiprocessor real-time systems,” in Real-Time Systems (ECRTS), 2012
24th Euromicro Conference on, 2012, pp. 223-232.
- Proposed real-time nested locking protocol (RNLP), with the related asymptotic analysis.

- B.C. Ward and J. H. Anderson, “Fine-grained multiprocessor real-time locking
with improved blocking,” in Proceedings of the 21st International Conference on
Real-Time Networks and Systems, ser. RTNS ’13, 2013.

- Conceived to deal with heterogeneous nested critical sections: Block + Spinning (
short-on-long)

23 RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux



Shared memory nested critical sections

- C. E. Nemitz, T. Amert, and J. H. Anderson, “Real-time multiprocessor locks with
nesting: Optimizing the common case,” in Proceedings of the 25th
International Conference on Real-Time and Network Systems (RTNS 2017), 2017

- nested read/write spin lock with fast path!

- A. Biondi, A. Weider, and B. Brandenburg, “A blocking bound for nested

fifo spin locks,” in Real-Time Systems Symposium (RTSS), 2016, pp.

291-302.
- Graph abstraction is introduced to derive a fine-grained analysis,
not based on asymptotic bounds for FIFO non-preemptive spin locks.

24 RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux



Linux’s locking needs

- Sleeping:
- Nested blocking (rt mutexes)
- Nested read/write (rw semaphores)

- Busy-wait:
- Nested read/write spin (rw lock)
- Nested spinlock (raw spin lock)

- Fast path is important
- Schedulers: TLFP, JLFP & IRQ/NMI
- Arbitrary affinities

25 RTSOPS 2018: Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux



2) The design of specialized analysis techniques
accounting for specific implementations of
complex types of locks (e.qg., the aforementioned
read/write lock in Linux).



3) finding more efficient locking protocols, accounting

for both general purpose benchmark performance (i.e.,

average-case behavior, needed by the GPOS nature of
Linux) and predictability.



Questions?



Thanks!



